Fast Algorithms for Spectral Collocation with Non-Periodic Boundary Conditions
نویسندگان
چکیده
Fast Algorithms with Applications to PDEs
منابع مشابه
The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملSpectral Methods for Periodic Initial Value Problems with Nonsmooth Data
In this paper we consider hyperbolic initial value problems subject to periodic boundary conditions with nonsmooth data. We show that if we filter the data and solve the problem by the Galerkin-Collocation method, recently proposed by us, then we can recover pointwise values with spectral accuracy, provided that the actual solution is piecewise smooth. For this we have to perform a local smooth...
متن کاملA numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems
In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملA Local Pressure Boundary Condition Spectral Collocation Scheme for the Three-Dimensional Navier-Stokes Equations
A spectral collocation scheme for the three-dimensional incompressible (u, p) formulation of the Navier–Stokes equations, in domains Ω with a non-periodic boundary condition, is described. The key feature is the high order approximation, by means of a local Hermite interpolant, of a Neumann boundary condition for use in the numerical solution of the pressure Poisson system. The time updates of ...
متن کامل